quinta-feira, 10 de outubro de 2019


Bremsstrahlung é a radiação produzida quando cargas elétricas sofrem desaceleração



X



FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


Bremsstrahlung é a radiação produzida quando cargas elétricas sofrem desaceleração. A palavra de origem alemã significa: Bremsenfrear e Strahlung= radiação.
Quando partículas carregadas, principalmente elétrons, interagem com o campo elétrico de núcleos de número atômico elevado ou com a eletrosfera, elas reduzem a energia cinética, mudam de direção e emitem a diferença de energia sob a forma de ondas eletromagnéticas, denominadas de raios X de freamento ou "bremsstrahlung".
A energia dos raios X de freamento depende fundamentalmente da energia da partícula incidente. Os raios X gerados para uso médico e industrial não passam dos 500 keV, embora possam ser obtidos em laboratório raios X até com centenas de MeV. Como o processo depende da energia e da intensidade de interação da partícula incidente com o núcleo e de seu ângulo de "saída", a energia da radiação produzida pode variar de zero a um valor máximo, sendo contínuo seu espectro em energia.
Nota: Na produção de raios X de freamento são produzidos também raios X característicos referentes ao material com o qual a radiação está interagindo. Esses raios X característicos somam-se ao espectro de raios X de freamento e aparecem com picos destacados nesse espectro.
Ao interagir com a matéria, a radiação incidente pode também transformar total ou parcialmente sua energia em outro tipo de radiação. Isso ocorre na geração dos raios X de freamento, na produção de pares e na radiação de aniquilação.
Enquanto que os raios X característicos são provenientes da interação em processos de decaimento.

Raios X característicos[editar | editar código-fonte]

Quando ocorre a captura eletrônica ou outro processo que retire elétrons da eletrosfera do átomo, a vacância originada pelo elétron é imediatamente preenchida por algum elétron de orbitais superiores. Ao passar de um estado menos ligado para outro mais ligado (por estar mais interno na estrutura eletrônica), o excesso de energia do elétron é liberado por meio de uma radiação eletromagnética, cuja energia é igual à diferença de energia entre o estado inicial e o final. Vai ocorrer instabilidade do átomo do ânodo, com "saltos" quânticos e libertação de radiação electromagnética característica do respectivo material, até que o estado energético do átomo seja mínimo. A denominação "característico" se deve ao fato dos fótons emitidos, por transição, serem monoenergéticos e revelarem detalhes da estrutura eletrônica do elemento químico e, assim, sua energia e intensidade relativa permitem a identificação do elemento de origem.
A produção de Rx só ocorre por materiais de número atómico elevado (como o caso do tungsténio). Os raios X característicos são portanto dependentes dos níveis de energia da eletrosfera e, dessa forma, seu espectro de distribuição em energia é discreto.
Como a emissão de raios X característicos é um fenômeno que ocorre com energia da ordem da energia de ligação dos diversos níveis da eletrosfera, as energias de emissão dos raios X característicos variam de alguns eV a dezenas de keV. Agora, baseados no modelo de Bohr podemos entender como são gerados os raios característicos, e porquê o espectro obtido com o tungstênio apresenta apenas linhas discretas.
Quando o elétron proveniente do cátodo incide no ânodo, ele pode expulsar um elétron orbital. A órbita de onde o elétron será expulso, depende da energia do elétron incidente e dos níveis de energia do átomo do anodo. A lacuna deixada por este elétron será preenchida por um elétron mais externo.





campo eletromagnético é um fenômeno que envolve o campo elétrico e o campo magnético variando no tempo. [1]
As equações de Maxwell constituem basicamente a teoria dos fenômenos eletromagnéticos. No entanto, é importante ressaltar que a Lei de Faraday da indução, é um dos importantes princípios do fenômeno.
Lei de Faraday da indução afirma que o módulo da força eletromotriz induzida em um circuito é diretamente proporcional à taxa temporal de variação do fluxo magnético através do mesmo circuito. [2]
X



FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


Esse sinal negativo que aparece na equação de Faraday é decorrente de outra lei proposta pelo físico Heinrich Lenz, onde a polaridade da Força eletromotriz induzida que provoca o aparecimento de uma corrente elétrica gera um fluxo magnético de sentido oposto à variação do mesmo fluxo, através do circuito fechado. Ou seja, com a redução do fluxo magnético no tempo, a corrente induzida cria um campo magnético com mesmo sentido do fluxo; E com o aumento do fluxo magnético no tempo, a corrente induzida cria o mesmo campo com sentido oposto ao do fluxo magnético.
Uma experiência que podemos observar, e comprovar o aparecimento do campo eletromagnético, é quando se aproxima um imã de uma espira de um fio condutor ligado a um galvanômetro e nota-se que a agulha indicadora do instrumento desvia a direção, Quando o imã é afastado, a agulha desvia para uma direção oposta, e havendo esse movimento relativo entre o imã e a bobina, haverá uma indução de corrente elétrica, criando um campo eletromagnético formado pela interação do campo magnético com um campo elétrico, ou seja, um campo magnético variável no tempo produz um campo elétrico, e da mesma maneira, todo campo elétrico variável no tempo produz um campo magnético. Efeitos como este, não estacionários, constituem basicamente os fenômenos eletromagnéticos.
Matematicamente, um campo eletromagnético é um campo composto de dois vetores campo: o campo elétrico (E) e o campo magnético (B), que caracterizam esses dois campos e possuem um valor definido a cada ponto no espaço e tempo.
As ondas eletromagnéticas são uma consequência da formação do campo eletromagnético, e se propagam através do vácuo com a velocidade da luz. [3] Elas são portadoras de energia, e quando se propagam no espaço, podem transferir energia para corpos que se encontram em sua trajetória. Estas ondas são geradas por cargas elétricas que oscilam, ou seja, quando temos campos elétrico e magnético oscilante e perpendiculares entre si e à direção da propagação da onda, sendo consideradas ondas transversais. [4]
amplitude desta onda, segundo Maxwell, esta relacionada por:
 , onde c é a velocidade da luz.
X



FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





Um campo elétrico (AO 1945: campo eléctrico) é o campo de força provocado pela ação de cargas elétricas, (elétronsprótons ou íons) ou por sistemas delas. Cargas elétricas colocadas num campo elétrico estão sujeitas à ação de forças elétricas, de atração e repulsão.
A equação usada para se calcular a intensidade do vetor campo elétrico (E) é dada pela relação entre a força elétrica (F) e a carga de prova (q):
X



FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X



FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Onde N é a unidade de força (Newton) e C a unidade de carga (Coulomb).



A expressão campo magnético é usada para dois campos vetoriais diferentes, simbolizados por B e H.[nota 1][nota 2]
Existem muitos nomes alternativos para os dois campos (veja tabela ao lado). Para evitar confusão, este artigo usa campo B e campo H para estes campos, e usa campo magnético onde qualquer um dos dois campos se aplicar.
campo B pode ser definido de muitas formas equivalentes baseado nos seus efeitos sobre o ambiente. Por exemplo, uma partícula com carga elétricaq, movendo-se em um campo B com uma velocidade v, experimenta uma força F:
X



FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde × é o produto vetorial. O campo B é medido em tesla no SI, e em gauss em unidades cgs.
Quando uma partícula carregada "q" está sob a influência dos campos magnéticos e elétrico, duas forças são aplicadas sobre ela. A soma dessas forças é conhecida como Força de Lorentz:
X



FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Tecnicamente, B é um pseudovetor (também chamado de vetor axial - esta é uma afirmação sobre como o campo magnético se comporta quando você reflete o mundo em um espelho, conhecido como paridade). Este fato fica aparente da definição acima de B.
Apesar da maneira de ver B ter mudado com o passar dos anos, este é agora entendido como sendo a quantidade fundamental, enquanto H é um campo derivado. Este é definido como uma modificação de B devido a campos magnéticos produzidos pelo meio material, tal que (em unidades do SI):
X



FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde M é a magnetização do material e μ0 é a permeabilidade do vácuo (ou a constante magnética).[3] O campo H é medido em amperes por metro (A/m) em unidades do SI, e em oersteds (Oe) em unidades cgs.[4]
Em materiais cujo M é proporcional a B a relação entre B e H pode ser colocada na forma mais simples: H = B ⁄ μ. onde μ é um parâmetro dependente do material, chamado de permeabilidade. No vácuo não há magnetização, M, de forma que H = B / μ0 (vácuo). Para muitos materiais, entretanto, não há uma relação simples entre B e M. Por exemplo, materiais ferromagnéticos e supercondutores possuem uma magnetização que é uma função de múltiplos valores de B, devido à histerese.[5]
Veja #História abaixo para mais detalhes.



Uma rotação do campo magnético ou campo magnético rotativo é um campo magnético que roda a uma velocidade uniforme (de preferência) e é gerada a partir de uma fase de corrente eléctrica alterna . Foi descoberto por Nikola Tesla em 1882, e é o fenômeno em que se baseia o motor AC .
Sequenciamento de turnos baseado em três imãs. Total resultante Fase Um Fase Dois Fase Três.

Princípio de funcionamento [editar | editar código-fonte]

Ao espalhar sobre um cilindro de ferro ferromagnéticos ( Stator para máquinas eléctricas assíncronas) algumas bobinas , as entradas e saídas de 120 ° para o outro e estão separados alimentados com uma corrente alternada é obtido pelo efeito de corrente conduzida através deles uma o campo magnético de pulso.
Se duas bobinas iguais são colocados predispostos ao primeiro, mas de modo a que os planos que contêm eles estão localizados a 60 ° para a esquerda e para a direita da primeira bobina e cada grupo é alimentado.
Três posições de rotação, com a distribuição de energia do campo resultante.
Se cada grupo de bobinas tem um pequeno número delas, o campo magnético criado terá uma onda quadrada. Para aproximar uma sinusóide que é feito é para aumentar o número de espiras em cada grupo (de fase), e distribui -los tanto quanto possível no estator. 1
polosRPM a 50HzRPM a 60 Hz
230003600
415001800
610001200
8750900
10600720
12500600
14428,6514,3
16375450
18333,3400
20300360
X



FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D